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Structure and dynamics of solitons in a nematic liquid crystal in a rotating magnetic field
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We study the structure and speed of movement of dynamic solitons in a thin layer of nematic liquid crystal,
with homeotropic boundary conditions, in a rotating magnetic field. Based on numerical integration of the
equations of motion, we find that the soliton must be described as a two-dimensional object with unconstrained
director motion. From some qualitative features of the soliton structure seen in our numerical results, we are
able to deduce an approximate analytic theory of the physics of the soliton structure and dynamics that
accounts accurately for the observations. The basic elements of this picture are a tilted plane in which the
director rotates as the soliton passes a point, with the tilt angle of the plane being dictated by a second
Freedericksz transition within the solitofiS1063-651X97)14910-§

PACS numbds): 61.30.Gd, 07.05.Tp, 47.54r

[. INTRODUCTION propagation speed. In the experiments on this system, the
main measurable characteristic of a soliton is its propagation
Several experimental studies have been carried out on thgpeed, which has been studied as a function of magnetic field
dynamical system consisting of a layer of nematic liquidstrength and rotation rate. As shown below, one can calculate
crystal in a continuously rotating magnetic figli-8]. A this speed from a simple one dimensional model of the soli-
general introduction to the phenomenology of this system igon. The measurements and calculations disagree in one ma-
presented elsewhefé,9], along with theoretical analysis of jor way. The calculated speed goes to zero linearly as rota-
some of the observatiorj€,3,5. In this paper, we concen- tion speed goes to zero, for any magnetic field, while in the
trate on one of the simplest of the observed phenomen#bservations, the speed drops abruptly to zero at a finite ro-
propagating solitary waves. We review just enough of thefation rate, the value of which depends on the magnetic field.
general system to address this phenomenon, present the sifYe present first the simple model, since it is the basis for
plest one dimensional theoretical description based on thiter calculations.
overdamped sine-Gordon equation, compare it to observa- We define a local coordinate system, fixed in the sample,
tions, and then present the two-dimensional model of thén whichy is parallel to the soliton, along which the structure
soliton that we have developed through a combination ofs invariant, andk is perpendicular to the soliton, parallel to
numerical simulations and analytic studies. its direction of propagation. Looking only at the phase lag
The basic physical system consists of a thin nematic layegngle as a function ok in the sample midplane, one can
contained between parallel glass plates treated to align tharite down an equation of motion faz, involving the elas-
nematic director perpendicular to the plates. A uniform magdic, viscous, and field torques on the director. If one is look-
netic field is applied, with the field parallel to the plane of theing explicitly for soliton solutions, which propagate with a
sample. For the purposes of the discussion here, we considéxed shape and speaed one can use a coordinate propor-
field strengths well above the threshold field for thédére tional tox—wvt. This model of the soliton is governed by the
ericksz transition, so that in a static uniform sample, the di-overdamped sine-Gordon equatid]
rector in the sample midplane is parallel to the field. The
sample is rotated about an axis normal to its plane, and for Pa v da ) 1
high enough fields and low enough rotation rates, the field &_§2+20_o 9E FSin2a+ s w7=0, @)
applies sufficient torque so that the director follows the field
synchronously, with a phase lag anglelue to the rotational \yhere w is the angular velocity of the rotating magnetic
wsposny of .the nemat_|c. A stgble, unn‘or.m, steady state CONfield, 7 the magnetic response time constant, aga refer-
dition for this system is described by this phase angle beingnce velocity. The coordinaté= (x—uvt)/&,. The param-

a constantg,, at every point in the midplane of the sample. gters defined here are expressed as
However, if a local disturbance causes the phase angle to

increase beyond some critical value, a phase slippage by 2y
. . . . 1
radians can occur locally, and the boundary of this region is T=—", 2
then a solitary wave, or kink, which propagates away from XaH
the source. Dust particles in the sample serve as nucleation
sources for a sequence of such solitary wave, or soliton, rings vo=4&n/7=2H\Kxal 71, (©)
forming a bulls-eye pattern about the nucleation point. Each
ring is well separated from its neighbors in the sequence, and &= VK/xa/H. (4)

propagates as an isolated object. In this paper, we look at a
single soliton, in the limit of large radius, so the curvature ofHereH is the magnetic field strength,, the nematic rota-
the ring has negligible effect on the soliton structure andional viscosity,y, the anisotropy of the magnetic suscepti-
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Although there is no analytic solution for the sine-Gordon
equation, we can obtain an approximate solution for the FIG. 2. Velocity of dynamic solitons from numerical simulation.
speed of a soliton using a perturbation technique.d=e0  Top: d=52 um. Bottom:H =8 kG.
andw=0 (henceay=0), Eqg.(1) has a solution of the form

J‘aOJrﬂ'l q fao+ 71'2 v ﬁad (10)
Ja SwTda= — < da.
a—gz—sina. (7) a0 2 @0 vo 9§

Combined with Eq(8) this gives an expression féy, which,
when combined with Eq9), leads to an analytic expression
or the velocity:

This corresponds to a static soliton.
Assuming that the structure of a dynamic soliton is only
perturbation of the static one, we take the trial solution

ia 2(vlvg)?=V1—(wr)’+(wrml4)?—J1—(wr)? (11
— =—Asin(a— ag) —Bsin2(a— «ay). (8)
¢ This approximate solution for the speed of a soliton from

i o ) the overdamped sine-Gordon equation agrees with precise

This satisfies the requirement that whem=ao OF  pymerical result§10] to within a few percent in the whole

lv
+V1-(w1)?, B=5_—
0

a=agtm, daldf=0 (Fig. 1) and thate approaches its range ofwr from 0 to 1. The speed varies linearly widr,
asymptotic values exponentially on both sides of the solitonyit the correct slope neasr=0, and has a weak vertical
Expanding equatiofil) with ansatz(8) near botha=ao  glope singularity atwr=1, which appears to be correct.
and a=ao+m and demanding that be independent of,  However, as we indicated before, this answer does not agree
we have with experiments. For comparison of theory with data, see
Fig. 2 of Ref.[1]. The most significant discrepancy is that
A \/(i this formula predicts the speed of a soliton to go smoothly to
= 9) o . )
Vg 0 only aswr approaches 0, while in experiments the transi-
tion of a dynamic soliton to a static one occurs abruptly at a
Notice that Eq(1) is the equation of motion of a particle finite w7.
in a viscous medium and a conservative potential if one An initial idea considered qualitatively by Migler and
thinks of (a,£) as(position, timg. The potential has a mean Meyer to explain the transition from dynamic to static be-
slope and a series of hills. The soliton solution correspondbavior was that in the dynamic soliton the director stays
to the motion of a particle starting from one local potentialparallel to the sample plane during soliton motion, while in
maximum with 0 velocity and sliding down to the next maxi- the static soliton, the director is oriented vertically, i.e., nor-
mum where it just comes to rest due to friction. The consermal to the sample plane, in the center of the soliton. This
vation of energy for this trajectory, converting potential en-structural transition was viewed as being driven by torques
ergy to friction losses, requires that from the sample surfaces, at which the director is vertical,
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and as being associated with slow soliton speed, allowing 7T T T T T 11
enough time for the director to reorient from in-plane to ver- e
tical as the soliton passed a point in the sample. However,no - - - = -« + » '
guantitative model emerged from this idea. .. ..o 00 .
Gilli etal. and Frischet al. [4,5] developed theory and = = - - =« '
carried out experiments on a closely related system, differing - . . . . .. )
from ours in that there is only weak tilting of the director | | |
from the vertical over the whole sample. The role of director
tilting within the soliton in the dynamic to static transition FIG. 3. A snapshot of the director profile in thez plane from
was analyzed in terms of Ising and Bloch wall structures.our computer simulatiorfoneK mode). d=52 um, H=8 kG,
They were able to develop theory in terms of the small in-w=1.45s*.
plane component of the director, as a two component order
parameter, for which the equation of motion is a time depenhomeotropic, that is, the director is perpendicular to the sur-
dent Ginzburg-Landau equation. For this system, they coulfiaces. The soliton itself lies along the invariant direction
calculate the critical condition for the static to dynamic tran-The parameters used in our simulation & cgs unit$
sition, and the speed of the dynamic solitons. We were, howy;=0.5 P,K=3.0X 10" 7 dyn, andy,=0.5x10"".
ever, forced to consider arbitrarily large director tilts, and Using rescaled velocity/v, and normalized angular ve-
unconstrained director motion. locity of the magnetic fieldv’ = w7, the speeds of solitons
We wanted to explore the role of director orientation andfor different sample thicknesses and different magnetic fields
surface torques in soliton speed, and also to seek explanare presented in Fig. 2. There are several points to be noted:
tions to some other unusual soliton behavior reported previtl) both the thickness of the sample and the strength of mag-
ously [11], such as solitons colliding without annihilating. netic field affect the speed of a soliton. However, when
We therefore developed a two dimensional model for uncone’—1, the speeds of solitons converge toward a uniform
strained director motion, still assuming that the soliton struc-curve; (2) whenw’—1, the speed of a soliton does not ex-
ture was invariant along its length. Our numerical simula-hibit a vertical slope singularity as predicted by the sine-
tions described below gave results strikingly similar to theGordon equation(3) the speed of a soliton goes continu-
experiments. These led us to new insights into the solitorously to 0 at a finitan’. As will be shown later, this critical
structure, and a clear physical model of the soliton dynamicsyalue . has a well defined meaning.
along with an approximate analytic calculation of soliton ve- A typical snapshot of the cross section of a soliton is
locity. shown in Fig. 3. Notice the essential feature that the director
is not parallel to the sample plane in the middle of the soli-
[l. TWO-DIMENSIONAL MODEL WITH  #-a COUPLING ton, but rather is tilted at some oblique angle. Far from the
i i o center of the soliton the director is parallel to the sample
The general equations of motion for the nematic directorane hecause the magnetic field is high above the threshold
can be derived in different wayl2,13. In the simplest o the Federicksz transition. Thus, two angles as functions
(oneK) model where all three elastic constants are equal ang poth x andz are needed to describe the soliton. The sec-
flow effects are ignored, we have a torque equation ond angle is the polar anglé between thez axis and the
an director.
y—E = KVZnM+XanVH Ho, (12) To keep the resulting model simple we adopt the follow-
at ing approximate method: first, we derive the coupled equa-
tions for # and « in only one dimensionX), ignoring z.
Based on another feature seen in our numerical results, this
Set of two equations is transformed into a single equation
with two new variablesf, and 8, in which 6, is indepen-
dent ofx. Then we consider the dependence of the director
and solve forf,, while B is kept independent of. Thus we
have decoupled the 2 degrees of freedom from the two di-
mensionality and each degree of freedom can be solved for
separately. This approximation captures the basic physics of
the problem with the simplest equations.
We first consider thed-a« coupling as a function ok.
Letting @ be the polar angle of a local director, and assuming
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with the constraint oh,n, =1, whereu,v=X,y,z and the
Einstein summation convention is adopted. Here we denot
the local directom with its components, .

The influence of flow upon the movement of solitons can
be shown to be rather smdll4]. The anisotropy in elastic-
ity, however, is an important factor in determining the be-
havior of dynamic solitons. In the next section we all&w
to be different fromK,; andK5 and study how the behavior
of a dynamic soliton changes. Letting;=K;=K and
K,/K=Nx, Eg. (12 is modified with an extra termA on the
right-hand side, which is given by

A=(1—)\)K[C curln+curl(Cn)], (13  that both¢ anda are independent af, we have
whereC=n-curln [12]. ﬁ-f-zi 0_0+1 2o Ja 2 26=0
We have solved the above equations numerically in a two 982 v dE 2 coSa J Sinzo=1,

dimensional grid in the-z plane wherex is the direction of
the soliton movement angl is the rotation axis of the mag- 1
netic field, which is perpendicular to the surfaces of the - T ) Csin2a+ —wr=0.
sample. As described ifi], the initial alignment of the lig- 9E? vo Sing 9§/ ¢ 2 2

uid crystal material sandwiched between two glass plates is (14

P ( v coY &0) da 1
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2 middle of the soliton. Along th& direction, in the midplane,
¢ the director can be seen as lying parallel to this series of
' parallel planes, and as the field rotates, the planes and direc-
, B (n) tor rotate together. The set of planes make a constant polar
% cly angle 8, with the z axis. 6, is a function only ofz, being
5 maximum at the midplane of the sample and zero on the
~ B surfaces. In the new coordinate systéfig. 4) we specify
the local director by the angleg, and 8, which is the pro-
o 4 jection of a-« onto the tilted soliton plane. The relationship
o between @,«) and (6,,8) is
sinfdcog a — ag) = C0SB,
A (R)
COS9= CcOH,Sing. (15
FIG. 4. The soliton plane, oB plane, in which the director
rotates, is th@© BC plane, tilted by polar anglé,. OB’'C’ is thex- Using Eq.(15), Eq. (14) can be transformed into
y plane. The directo(parallel toOB) is located by phase angJg
in the soliton plane, and projects to angle- oy on thex-y plane. (92'3 v B
Far from the soliton, the director is parallel to the li@A(A’), —— +2— — +sinfySinaycosxy(1—cos2B)
which is common to the soliton plane and tkey plane.OC and 352 vo 9¢

OC' are perpendicular tOA.

1

The difficulty in solving the coupled equatiofts4) comes B E(co§ao— SirP fosirP ag) sin2=0.
from the singularity inda/9¢ when a dynamic soliton goes (16)
to the static limit. It turns out that in that limit, at the center
of the soliton is 0 andda/dé is no longer defined. To This equation is very similar to Eq6). When 6, is /2,
avoid this problem, we make the following transformation ofthey are identical. Wher¢, is 0, however, Eq.(16) is
variables, inspired by our computer simulation results. equivalent to Eq(6) when «q is set to 0, which is a static

Figure 3 is a snapshot of the director profile at the instansoliton equation with 0 velocity.Settingaq to 0 is equiva-
when in the uniform bulk the director is aligned perpendicu-lent to settingw 7 to 0. See Egq95) and(11)]. It is clear that
lar to the page in the sample midplane. From this picture onéhe speed of a soliton is dependent on the argigleUsing
can visualize a set of planes that are perpendicular to thagain the perturbation solution for the sine-Gordon equation,
paper surface at this instant, and parallel to the director in theve find the speed of a soliton corresponding to @6) to be

2(vlvo)?=(coSag—sirf 8,sirfag)?+ [ (m/4)sinfysin2ay]° — (coS ag— Sirt fgsirf ag). 17

For small 6, the velocity increases linearly withy, and it  discovered that the dependencgﬁ@(z) on other parameters
increases monotonically & increases from 0 ter/2. Com-  can be understood as a secondefiericksz transition at the
paring this result with the work of Coullet al. [15] on  center of a soliton. _ _ o
chirality breaking transitions in domain walls, what we have, FOr a static solitorta domain wall in a nonrotating field,

done is to find an explicit description of the soliton in terms/n the one elastic constant approximation, in an infinite
of a phase angl@ and the “chiral order parametert. sample with no boundaries to exert torques, the director can

T . : . . rotate about any axis perpendicular to the magnetic field in
Although 6, is independent o, it varies withz. Itis zero  45ing from one side of the soliton to the other, since the

on the surfaces, and reaches a maximum valyeat the  gjastic energy is independent of rotation axis. In terms of our
midplane of the sample. Since the soliton moves as a wholgypordinate system, if the director remains parallel to the
we can take the maximum valug, for 6, and expect Eq. sample plane, the elastic distortion in the wall is all splay
(17) to give an upper limit for the speed of a dynamic soli- bend, while if it rotates parallel to the vertical plane, it is
ton. A more accurate model would include thegariation in  splay-bend or twist, depending on the orientation of the di-
the initial equations, but our approach allows us to reach aector far from the wall. However, in our finite sample with
simple analytic approximate expression for the velocity.homeotropic boundary conditions, the vertical orientation is
What remains to be done in this approximate model is taenergetically favored, since this is compatible with the ver-
understand howdy(z), or more simplyé,,, depends on field tical director at the boundaries. At low rotation rates, the
strength, rotation rate, and sample thickness. This will allowdirector in the soliton remains parallel to the vertical plane,
us to understand why the soliton speed varies so much frorme soliton is symmetric about its center, and the soliton ve-
the sine-Gordon model. locity is zero.
To determine the value of,,, one has to consider the  As the rotation rate increases, and the angjencreases,

coupling of the director field to the dimension. We have there is an increasingly large component of the magnetic
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TABLE I. Comparison of prediction by E420) and numerical TABLE Il. Comparison of theory and numerical data on the
results for the critical value ob 7 for the dynamic to static soliton critical value of w7 for the dynamic to static soliton transition.
transition.

d H H/H, (w7)

H/H, 7.49 5.41 4.05 (um) (kG) Theory Numerical
(w7), theory 0.26 0.36 0.48 32 8 3.33 0.71 0.69
(w7)¢ numerical 0.30 0.43 0.58

41 8 4.26 0.55 0.55
41 9 4.80 0.49 0.49
field, Hsinag, perpendicular to the vertical plane to which the
director in the soliton is parallel. At some critical rotation 52 6 4.05 0.58 0.58
rate, the torque plue to this perpendicular field component ., 7 473 0.49 0.49
causes a second federicksz transition, in which the director
in the middle of the soliton starts to tilt away from vertical. 52 8 5.41 0.43 0.43
Th|§ breaks the symmetry of th(_e §0I|ton, and causes it to 60 8 6.4 0.36 0.36
begin to move. The director can tilt in two degenerate direc-
tions, so a single static soliton can break into segments that 72 8 7.49 0.30 0.30

propagate in opposite directions while still being held to-
gether where they meet, generating spiral patt¢@is5].
These changes in structure and symmetry of the soliton whemeans the soliton motion is a relatively slow process, with
it becomes dynamic have been described in the cited work&mple time foré, to reach quasistatic equilibrium.

and analyzed in the limit of small global director {jilt,5]; It is clear that the internal structure of the soliton is quite
now we can account for the phase transition and velocity otlifferent from a translationally invariant sample, so our
the soliton in the general case of large director tilt. simple estimate for the Feeericksz transition may be poor.

If we simply use the classic Federicksz transition in @ However, just what elements of the internal structure, static
uniform sample for our model of the transition in the soliton, or dynamic, affect the critical condition for tilting of the
then we can calculate the critical valuea, or equivalently  soliton plane is less clear. The data indicate that the transi-
of wr, and the dependence @g(z) and 6., on the other tion takes place at higher values @f than calculated from
variables in the problem. In this cagg(z) can be expressed Eq. (20). This can be expressed as a larger valueHpifor
as an elliptic integral, and we hay&6] an implicit relation  the transition in the soliton, or as a different projection angle

betweend,,, and ay: for the magnetic field, larger than the valueaf calculated
above, by a small correction angde By looking at our data,

2 (0 dé i 2

Hsinag=H, m 0 (18 we found that this angle can be expresseddagH./H)~.

Rewriting Eq.(5) with this added term, and using, from
Eq. (19), we havewr=sin2(a.+ ), of,

7)o sifgy—sitd,’

in which H,= (r/d) VK7 xa.

When 6,,— 0, this equation gives a critical value af,, . [H, Hc\?
or, equivalently, ofw 7 for the dynamic to static soliton tran- (wT)c=sin2 afCSlf(ﬁ + W) } (21)
sition:
_ He As seen in Table I, this accurately describes the transition
SIWCZW- (190 from static to dynamic solitons for a large range of fields and
sample thicknesses. For a typical valudHdH =5, §=0.04
Since w 7= sin2uy=2sin,Cosy, we have rad, a small correction. If we assume thatis a constant
independent ofw, then above the critical value @b+ one
Hc Hc\? can calculate the maximum tilt ang#, as a function ofw
(‘”T)CZZW 1- (W) (200 from the implicit relationship

We have compared this prediction for the soliton transi-
tion with our numerical results in Table I. They tend to agree sin

zarcsir(wr)—
for large values oH/H.. The smaller the value dfi/H,

Hcﬂ_z HCJ’Hm de
H m™ HJo [sir?6,,—sirf6’

the less accurate the prediction. (22
To account for this difference, one of our first ideas was
that in the dynamic soliton the angtg at a given location In Fig. 5 we have plotted the calculated values &f

might not have time to change as the soliton moved past thatersusw+ and made a comparison with our numerical data.
point; this would favor the director simply staying parallel to It can be seen from the graph that the behaviof,gis very

the sample planef=7/2). To test this idea, we compared close to what is expected for a Ewericksz transition. Fi-
the characteristic time for the director to respond to the magnally, we can use these results @y, to calculate the speed
netic field 7 to the time of passage of a solitap~=2¢,/v. of the dynamic soliton from Eq17). We choose an example
With the material constants we used in our simulations, abf d=72 um andH =8 kG. The comparison of theory with
the maximum velocityt,, is about 5 times larger than This  the numerical data is shown in Fig. 6. As expected, the pre-
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FIG. 5. The comparison of theory and numerical results for the FIG. 7. WhenK,/K is below a certain limit -0.7), the veloc-
relationship betweef,,, andw 7. The theory curve is from E¢22). ity of a soliton drops discontinuously and the transition from dy-
H/H.=6.24. namic to static becomes first ordei=52 um, H=28 kG.

diction by our theory is above the numerical data, since we lll. EFFECTS OF VARYING K,/K

used the angl@,,, which is the maximum value o, in Eq.

(17).

The effect of varying elastic constait, on the move-
The qualitative functional form of soliton speed versusment (.)f a dynqmlc.sohton 's shown in Fig. 7. .Thls Is a rather
I complicated situation. When the three elastic constants are
7 shown in Fig. 6 compares well to the data measured b¥1ot equal, the propagating object is no longer strictly a soli-

N;zlér:oect)fatlhEG]d Tng%"'g?oansohnom atlhzo?rtzlar:;(')tyosndtictra\eztsaet'::nton’ since it oscillates in its shape and speed. WKgrs not
veoelty yhamic Sofiton I i IC 00 small K,/K=0.7—1.0 ford=52 um, H=8 kG), the

ﬁollio:], (qu|]Ee dr:f;et:enl\t/l;‘rcl)rrr] t?}% ?\'/ISCOE?S'”XEE S tr?‘ni:tlonnw'th average speed of a dynamic soliton behaves similarly to that
ysteresis fou y Migier a CYEL. ough Nasuno ¢ the onek model. It goes continuously to zero, and this

et al. compare their data to the predictions of a second orde£ero point shifts toward largen’ asK, becomes smaller

transition for the small global director tilt limit presented by When K., is considerably smaller thak (K,/K<0.7), a
Gilli etal.and Frischet al. [4,5], in fact their experimental yynamic soliton’s speed drops to zero from a finite value; the
conditions (1/H.=3.8) are in the regime of large director yansition from a dynamic soliton to a static one becomes
tilt, the same as Migler and Meyer's. We have found that theirst order. There is also a hysteresis loop associated with this
seeming discrepancy between experiments can be explaing@int. This is the case observed in Migler's experimédiis

by the role of the twist elastic constakt, in changing the  When K, becomes even smaller, the first order transition
nature of the soltion transition.

0.5
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0.9

point shifts back toward lowe®’, with larger hysteresis.

Our interpretation of these phenomena involves several
points. First, smalK, favors the static soliton energetically,
since it spends half its time as a twist structure, compared to
the dynamic soliton, which is pure splay bend = /2.

This moves the transition to higher valueswf. Explaining

the change to a first order transition involves understanding
the initial distortion of the soliton structure at smay; if the
initial replacement of twist curvature by bend curvature
raises the soliton energy by more than the reduction of field
energy due to the tilt, then small tilts are disfavored, while
large tilts may still lower the total enregy. This results in a
first order transition.

At high fields, more complex changes in the soliton struc-
ture take place. As seen in Fig. 8 there is a remarkable dis-
tortion of the previously simple soliton structure. Wik,
small, andd,, nears/2, the elastic coupling in thedirection
is weak, and the soliton can easily be deformed. The high tilt
region in the midplane tends to move faster than the low tilt
parts near the surfaces, resulting in the stretched structure
seen in Fig. 8. In this stretched structure, the leading edge is

FIG. 6. The theoretical prediction of the speed of solitons ismore subject to the influence of the bulk, which forces the
slightly above the numerical simulation results.

soliton to stay in thex-y plane. Thus this stretching may
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In Fig. 7 we have also shown a case whEreis bigger T
thanK. Although this is an artificial case, it has an interest-  F|G. 9. The tilting angleg, for K, larger thanK. It is well
ing consequence. A biggdf, means we have made the coordinated with the speed of a soliton.
static soliton less stable energetically, relative to the dynamic
one. Remarkably, a small increasen pushes the transi- model based on the numerical simulations shows that to a
tion point to w7=0. The behavior of a soliton in this case good degree of approximation, the 2 degrees of freedom can
resembles more the prediction of the sine-Gordon equatiore decoupled, with each being mainly a function of one di-
Notice, however, that there is still tilting of the director in the mension. Thez coupling of the director field can be de-
soliton, and the qualitative dependence of speed on tilt anglecribed by a planar structure, and the tilting of the soliton
is still valid. Figure 9 is a plot ob,,, versusw . Notice that ~ plane is essential in determining soliton velocity. Moreover,
the tilt angle still goes continuously to zero, nowat=0, the tilt behavior of the soliton, plane can be understood in
and linearly, not with vertical slope. This results in the speederms of a quasistatic second Bdericksz transition inside
varying quadratically with low values abr. the soliton, rather than mainly as a dynamic effect. Even for
Finally, we return to the discrepency between the resulthe case ofK,#K, the dependence of speed on tilt angle
of Refs.[1] and[6] on the order of the soliton transition. The seems qualitatively valid.
two groups used different materials, but with similar values There are many unanswered questions. The sometimes
of K, /K. However, Nasunet al.used a rather low magnetic complex structure of the dynamic soliton in the case of
field (H/H.=3.8) compared to Migler and Mayer K,<K, and the first order transition from dynamic to static
(H/H.=6.8) We have found that the relative valuekof at ~ are far from being explained in any detail. For the &ne-
which the transition changes from second to first order deapproximation, the dependance of the critical point for the
pends on magnetic field, with low fields favoring a seconddynamic to static soliton transition on magnetic field strength
order transition for a larger range &f,. In fact, we ran our and sample thickness is qualitatively well understood in
simulation for conditions as close as possible to those use@ms of a second Feelericksz transition, but the quantita-
by Nasunoet al. using a value oK,/K=0.5, a reasonable tive calculation of the critical point is not complete. Our
estimate for their material, MBBA. We still found a first empirical expression for a correction angle=(H./H)? is
order transition. However, for a somewhat lower fieldnot clearly tied to a precise or unique physical argument.
(H/H,=3.33) the transition was again second order. TheéOne idea is that although the secondégericksz transition
precise location of the tricritical point separating first andis quasistatic, there is still a small dynamic correction con-
second order transitions may also depend on the differendéected with the asymmetry in the soliton that appears as soon
betweerK; andK, which is large in MBBA, and which we as it starts to move. This could lead to the maximum torque
do not account for in our calculations. We conclude that theon the plane occurring for a projection angle not normal to
different results obtained by the two groups are well withinits initial vertical orientation, but off normal by a correction
the normal range expected, and do not represent a real dighgle &, proportional to the ratio of field response times
argeement. Unfortunately, neither group discovered the’7.=(H/H)?% This was the idea that led us to the form for
change from first order to second order transition with vary-the correction angle we proposed above. However, we have
ing field strength that our calculations indicate should existnot been able to make the argument more quantitative. An-
other interpretation is that the internal structure of the soliton
results in a critical field component for tiltindg{.s, which
happens to be larger thai. . If it also happens that we can
We have established a simple model to study the structurerite this new critical field a$d ./H=H./H+ (H./H)?, by
and movement of a dynamic soliton. The dynamic soliton isreferring to Eqs(18)—(22), in the limit of smallH./H, we
quite different from a static one in structure. It is basically acan get essentially the same correction angjl@ow repre-
two dimensional object with 2 degrees of freedom. Our re-senting the larger projection &f normal to the initially ver-
sults on the soltion transition and velocity are consistent witttical 8 plane, rather than projection & onto a different
experiments and with the previous conclusions of Refs. direction. However, in this case, we cannot explain the
and[5]. particular form forH.s, or even why it should be larger
For the one elastic constant limit, our simplified analyticthanH,.

IV. DISCUSSION
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