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Structure and dynamics of solitons in a nematic liquid crystal in a rotating magnetic field

Chun Zheng and Robert B. Meyer
The Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02254-9110

~Received 24 March 1997!

We study the structure and speed of movement of dynamic solitons in a thin layer of nematic liquid crystal,
with homeotropic boundary conditions, in a rotating magnetic field. Based on numerical integration of the
equations of motion, we find that the soliton must be described as a two-dimensional object with unconstrained
director motion. From some qualitative features of the soliton structure seen in our numerical results, we are
able to deduce an approximate analytic theory of the physics of the soliton structure and dynamics that
accounts accurately for the observations. The basic elements of this picture are a tilted plane in which the
director rotates as the soliton passes a point, with the tilt angle of the plane being dictated by a second
Fréedericksz transition within the soliton.@S1063-651X~97!14910-8#

PACS number~s!: 61.30.Gd, 07.05.Tp, 47.54.1r
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I. INTRODUCTION

Several experimental studies have been carried out on
dynamical system consisting of a layer of nematic liqu
crystal in a continuously rotating magnetic field@1–8#. A
general introduction to the phenomenology of this system
presented elsewhere@1,9#, along with theoretical analysis o
some of the observations@2,3,5#. In this paper, we concen
trate on one of the simplest of the observed phenome
propagating solitary waves. We review just enough of
general system to address this phenomenon, present the
plest one dimensional theoretical description based on
overdamped sine-Gordon equation, compare it to obse
tions, and then present the two-dimensional model of
soliton that we have developed through a combination
numerical simulations and analytic studies.

The basic physical system consists of a thin nematic la
contained between parallel glass plates treated to align
nematic director perpendicular to the plates. A uniform m
netic field is applied, with the field parallel to the plane of t
sample. For the purposes of the discussion here, we con
field strengths well above the threshold field for the Fre´ed-
ericksz transition, so that in a static uniform sample, the
rector in the sample midplane is parallel to the field. T
sample is rotated about an axis normal to its plane, and
high enough fields and low enough rotation rates, the fi
applies sufficient torque so that the director follows the fi
synchronously, with a phase lag anglea due to the rotationa
viscosity of the nematic. A stable, uniform, steady state c
dition for this system is described by this phase angle be
a constant,a0, at every point in the midplane of the samp
However, if a local disturbance causes the phase angl
increase beyond some critical value, a phase slippage bp
radians can occur locally, and the boundary of this regio
then a solitary wave, or kink, which propagates away fr
the source. Dust particles in the sample serve as nuclea
sources for a sequence of such solitary wave, or soliton, r
forming a bulls-eye pattern about the nucleation point. E
ring is well separated from its neighbors in the sequence,
propagates as an isolated object. In this paper, we look
single soliton, in the limit of large radius, so the curvature
the ring has negligible effect on the soliton structure a
561063-651X/97/56~5!/5553~8!/$10.00
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propagation speed. In the experiments on this system,
main measurable characteristic of a soliton is its propaga
speed, which has been studied as a function of magnetic
strength and rotation rate. As shown below, one can calcu
this speed from a simple one dimensional model of the s
ton. The measurements and calculations disagree in one
jor way. The calculated speed goes to zero linearly as r
tion speed goes to zero, for any magnetic field, while in
observations, the speed drops abruptly to zero at a finite
tation rate, the value of which depends on the magnetic fi
We present first the simple model, since it is the basis
later calculations.

We define a local coordinate system, fixed in the sam
in which y is parallel to the soliton, along which the structu
is invariant, andx is perpendicular to the soliton, parallel t
its direction of propagation. Looking only at the phase l
angle as a function ofx in the sample midplane, one ca
write down an equation of motion fora, involving the elas-
tic, viscous, and field torques on the director. If one is loo
ing explicitly for soliton solutions, which propagate with
fixed shape and speedv, one can use a coordinate propo
tional tox2vt. This model of the soliton is governed by th
overdamped sine-Gordon equation@1#

]2a

]j2
12

v
v0

]a

]j
2

1

2
sin2a1

1

2
vt50, ~1!

where v is the angular velocity of the rotating magnet
field, t the magnetic response time constant, andv0 a refer-
ence velocity. The coordinatej5(x2vt)/jh . The param-
eters defined here are expressed as

t5
2g1

xaH2
, ~2!

v054jh /t52HAKxa/g1 , ~3!

jh5AK/xa/H. ~4!

Here H is the magnetic field strength,g1 the nematic rota-
tional viscosity,xa the anisotropy of the magnetic suscep
5553 © 1997 The American Physical Society



v
l.

of

on
th

y a

on

e
n
n
nd
ia
i-
e
n

n

m
cise

l
t.
gree
ee

at
to

si-
t a

d
e-
ys
in
r-

his
es
al,

dy

n.

5554 56CHUN ZHENG AND ROBERT B. MEYER
bility, andK the nematic curvature elastic constant. We ha
assumed for now that all three elastic constants are equajh
is the magnetic coherence length.

A soliton solution of Eq.~1! corresponds to the change
a in the range@a0, a01p#, wherea0 is the phase lag in the
uniform region ahead of the soliton and determined by

sin2a05vt. ~5!

Changing variablea to w5a2a0, Eq. ~1! can be rewritten
in another form:

]2w

]j2
12

v
v0

]w

]j
1sina0cosa0~12cos2w!

2
1

2
~cos2a02sin2a0!sin2w50. ~6!

Although there is no analytic solution for the sine-Gord
equation, we can obtain an approximate solution for
speed of a soliton using a perturbation technique. Forv50
andv50 ~hencea050), Eq.~1! has a solution of the form

]a

]j
52sina. ~7!

This corresponds to a static soliton.
Assuming that the structure of a dynamic soliton is onl

perturbation of the static one, we take the trial solution

]a

]j
52Asin~a2a0!2Bsin2~a2a0!. ~8!

This satisfies the requirement that whena5a0 or
a5a01p, ]a/]j50 ~Fig. 1! and thata approaches its
asymptotic values exponentially on both sides of the solit

Expanding equation~1! with ansatz~8! near botha5a0
anda5a01p and demanding thatv be independent ofa,
we have

A5AS v
v0

D 2

1A12~vt!2, B5
1

2

v
v0

. ~9!

Notice that Eq.~1! is the equation of motion of a particl
in a viscous medium and a conservative potential if o
thinks of (a,j) as~position, time!. The potential has a mea
slope and a series of hills. The soliton solution correspo
to the motion of a particle starting from one local potent
maximum with 0 velocity and sliding down to the next max
mum where it just comes to rest due to friction. The cons
vation of energy for this trajectory, converting potential e
ergy to friction losses, requires that

FIG. 1. A spatial plot of2]a/]j. The static solution of the
sine-Gordon equation is spatially symmetric. The structure of a
namic soliton, however, is asymmetric.
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a0

a01p1

2
vtda5E

a0

a01p

2
v
v0

]a

]j
da. ~10!

Combined with Eq.~8! this gives an expression forA, which,
when combined with Eq.~9!, leads to an analytic expressio
for the velocity:

2~v/v0!25A12~vt!21~vtp/4!22A12~vt!2. ~11!

This approximate solution for the speed of a soliton fro
the overdamped sine-Gordon equation agrees with pre
numerical results@10# to within a few percent in the whole
range ofvt from 0 to 1. The speed varies linearly withvt,
with the correct slope nearvt50, and has a weak vertica
slope singularity atvt51, which appears to be correc
However, as we indicated before, this answer does not a
with experiments. For comparison of theory with data, s
Fig. 2 of Ref. @1#. The most significant discrepancy is th
this formula predicts the speed of a soliton to go smoothly
0 only asvt approaches 0, while in experiments the tran
tion of a dynamic soliton to a static one occurs abruptly a
finite vt.

An initial idea considered qualitatively by Migler an
Meyer to explain the transition from dynamic to static b
havior was that in the dynamic soliton the director sta
parallel to the sample plane during soliton motion, while
the static soliton, the director is oriented vertically, i.e., no
mal to the sample plane, in the center of the soliton. T
structural transition was viewed as being driven by torqu
from the sample surfaces, at which the director is vertic

-

FIG. 2. Velocity of dynamic solitons from numerical simulatio
Top: d552 mm. Bottom:H58 kG.
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56 5555STRUCTURE AND DYNAMICS OF SOLITONS IN A . . .
and as being associated with slow soliton speed, allow
enough time for the director to reorient from in-plane to v
tical as the soliton passed a point in the sample. However
quantitative model emerged from this idea.

Gilli et al. and Frischet al. @4,5# developed theory and
carried out experiments on a closely related system, diffe
from ours in that there is only weak tilting of the direct
from the vertical over the whole sample. The role of direc
tilting within the soliton in the dynamic to static transitio
was analyzed in terms of Ising and Bloch wall structur
They were able to develop theory in terms of the small
plane component of the director, as a two component o
parameter, for which the equation of motion is a time dep
dent Ginzburg-Landau equation. For this system, they co
calculate the critical condition for the static to dynamic tra
sition, and the speed of the dynamic solitons. We were, h
ever, forced to consider arbitrarily large director tilts, a
unconstrained director motion.

We wanted to explore the role of director orientation a
surface torques in soliton speed, and also to seek expl
tions to some other unusual soliton behavior reported pr
ously @11#, such as solitons colliding without annihilating
We therefore developed a two dimensional model for unc
strained director motion, still assuming that the soliton str
ture was invariant along its length. Our numerical simu
tions described below gave results strikingly similar to t
experiments. These led us to new insights into the sol
structure, and a clear physical model of the soliton dynam
along with an approximate analytic calculation of soliton v
locity.

II. TWO-DIMENSIONAL MODEL WITH u-a COUPLING

The general equations of motion for the nematic direc
can be derived in different ways@12,13#. In the simplest
~one-K! model where all three elastic constants are equal
flow effects are ignored, we have a torque equation

g1

]nm

]t
5K¹2nm1xannHnHm , ~12!

with the constraint ofnmnm51 , wherem,n5x,y,z and the
Einstein summation convention is adopted. Here we den
the local directorn with its componentsnm .

The influence of flow upon the movement of solitons c
be shown to be rather small@14#. The anisotropy in elastic
ity, however, is an important factor in determining the b
havior of dynamic solitons. In the next section we allowK2
to be different fromK1 andK3 and study how the behavio
of a dynamic soliton changes. LettingK15K35K and
K2 /K5l, Eq. ~12! is modified with an extra termD on the
right-hand side, which is given by

D5~12l!K@C curln1curl~Cn!#, ~13!

whereC5n•curln @12#.
We have solved the above equations numerically in a

dimensional grid in thex-z plane wherex is the direction of
the soliton movement andz is the rotation axis of the mag
netic field, which is perpendicular to the surfaces of t
sample. As described in@1#, the initial alignment of the liq-
uid crystal material sandwiched between two glass plate
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homeotropic, that is, the director is perpendicular to the s
faces. The soliton itself lies along the invariant directiony.
The parameters used in our simulation are~in cgs units!
g150.5 P,K53.031027 dyn, andxa50.531027.

Using rescaled velocityv/v0 and normalized angular ve
locity of the magnetic fieldv85vt, the speeds of solitons
for different sample thicknesses and different magnetic fie
are presented in Fig. 2. There are several points to be no
~1! both the thickness of the sample and the strength of m
netic field affect the speed of a soliton. However, wh
v8→1, the speeds of solitons converge toward a unifo
curve; ~2! whenv8→1, the speed of a soliton does not e
hibit a vertical slope singularity as predicted by the sin
Gordon equation;~3! the speed of a soliton goes contin
ously to 0 at a finitev8. As will be shown later, this critical
valuevc8 has a well defined meaning.

A typical snapshot of the cross section of a soliton
shown in Fig. 3. Notice the essential feature that the direc
is not parallel to the sample plane in the middle of the so
ton, but rather is tilted at some oblique angle. Far from
center of the soliton the director is parallel to the sam
plane, because the magnetic field is high above the thres
for the Fréedericksz transition. Thus, two angles as functio
of both x andz are needed to describe the soliton. The s
ond angle is the polar angleu between thez axis and the
director.

To keep the resulting model simple we adopt the follo
ing approximate method: first, we derive the coupled eq
tions for u and a in only one dimension (x), ignoring z.
Based on another feature seen in our numerical results,
set of two equations is transformed into a single equat
with two new variables,u0 and b, in which u0 is indepen-
dent ofx. Then we consider thez dependence of the directo
and solve foru0, while b is kept independent ofz. Thus we
have decoupled the 2 degrees of freedom from the two
mensionality and each degree of freedom can be solved
separately. This approximation captures the basic physic
the problem with the simplest equations.

We first consider theu-a coupling as a function ofx.
Letting u be the polar angle of a local director, and assum
that bothu anda are independent ofz, we have

]2u

]j2
12

v
v0

]u

]j
1

1

2Fcos2a2S ]a

]j D 2Gsin2u50,

]2a

]j2
12S v

v0
1

cosu

sinu

]u

]j D ]a

]j
2

1

2
sin2a1

1

2
vt50.

~14!

FIG. 3. A snapshot of the director profile in thex-z plane from
our computer simulation~one-K model!. d552 mm, H58 kG,
v51.45 s21.
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5556 56CHUN ZHENG AND ROBERT B. MEYER
The difficulty in solving the coupled equations~14! comes
from the singularity in]a/]j when a dynamic soliton goe
to the static limit. It turns out that in that limit, at the cent
of the solitonu is 0 and]a/]j is no longer defined. To
avoid this problem, we make the following transformation
variables, inspired by our computer simulation results.

Figure 3 is a snapshot of the director profile at the inst
when in the uniform bulk the director is aligned perpendic
lar to the page in the sample midplane. From this picture
can visualize a set of planes that are perpendicular to
paper surface at this instant, and parallel to the director in

FIG. 4. The soliton plane, orb plane, in which the director
rotates, is theOBC plane, tilted by polar angleu0. OB8C8 is thex-
y plane. The director~parallel toOB) is located by phase angleb
in the soliton plane, and projects to anglea2a0 on thex-y plane.
Far from the soliton, the director is parallel to the lineOA(A8),
which is common to the soliton plane and thex-y plane.OC and
OC8 are perpendicular toOA.
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middle of the soliton. Along thex direction, in the midplane,
the director can be seen as lying parallel to this series
parallel planes, and as the field rotates, the planes and d
tor rotate together. The set of planes make a constant p
angleu0 with the z axis. u0 is a function only ofz, being
maximum at the midplane of the sample and zero on
surfaces. In the new coordinate system~Fig. 4! we specify
the local director by the anglesu0 andb, which is the pro-
jection ofa-a0 onto the tilted soliton plane. The relationsh
between (u,a) and (uo ,b) is

sinucos~a2a0!5cosb,

cosu5cosu0sinb. ~15!

Using Eq.~15!, Eq. ~14! can be transformed into

]2b

]j2
12

v
v0

]b

]j
1sinu0sina0cosa0~12cos2b!

2
1

2
~cos2a02sin2u0sin2a0!sin2b50.

~16!

This equation is very similar to Eq.~6!. Whenu0 is p/2,
they are identical. Whenu0 is 0, however, Eq.~16! is
equivalent to Eq.~6! when a0 is set to 0, which is a static
soliton equation with 0 velocity.@Settinga0 to 0 is equiva-
lent to settingvt to 0. See Eqs.~5! and~11!#. It is clear that
the speed of a soliton is dependent on the angleu0. Using
again the perturbation solution for the sine-Gordon equat
we find the speed of a soliton corresponding to Eq.~16! to be
2~v/v0!25A~cos2a02sin2u0sin2a0!21@~p/4!sinu0sin2a0#22~cos2a02sin2u0sin2a0!. ~17!
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For smallu0 the velocity increases linearly withu0, and it
increases monotonically asu0 increases from 0 top/2. Com-
paring this result with the work of Coulletet al. @15# on
chirality breaking transitions in domain walls, what we ha
done is to find an explicit description of the soliton in term
of a phase angleb and the ‘‘chiral order parameter’’u0.

Althoughu0 is independent ofx, it varies withz. It is zero
on the surfaces, and reaches a maximum valueum at the
midplane of the sample. Since the soliton moves as a wh
we can take the maximum valueum for u0 and expect Eq.
~17! to give an upper limit for the speed of a dynamic so
ton. A more accurate model would include thez variation in
the initial equations, but our approach allows us to reac
simple analytic approximate expression for the veloc
What remains to be done in this approximate model is
understand howu0(z), or more simplyum , depends on field
strength, rotation rate, and sample thickness. This will all
us to understand why the soliton speed varies so much f
the sine-Gordon model.

To determine the value ofum , one has to consider th
coupling of the director field to thez dimension. We have
le,

a
.
o

m

discovered that the dependence ofu0(z) on other parameters
can be understood as a second Fre´edericksz transition at the
center of a soliton.

For a static soliton~a domain wall! in a nonrotating field,
in the one elastic constant approximation, in an infin
sample with no boundaries to exert torques, the director
rotate about any axis perpendicular to the magnetic field
going from one side of the soliton to the other, since t
elastic energy is independent of rotation axis. In terms of
coordinate system, if the director remains parallel to
sample plane, the elastic distortion in the wall is all spl
bend, while if it rotates parallel to the vertical plane, it
splay-bend or twist, depending on the orientation of the
rector far from the wall. However, in our finite sample wi
homeotropic boundary conditions, the vertical orientation
energetically favored, since this is compatible with the v
tical director at the boundaries. At low rotation rates, t
director in the soliton remains parallel to the vertical plan
the soliton is symmetric about its center, and the soliton
locity is zero.

As the rotation rate increases, and the anglea0 increases,
there is an increasingly large component of the magn
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56 5557STRUCTURE AND DYNAMICS OF SOLITONS IN A . . .
field, Hsina0, perpendicular to the vertical plane to which th
director in the soliton is parallel. At some critical rotatio
rate, the torque due to this perpendicular field compon
causes a second Fre´edericksz transition, in which the directo
in the middle of the soliton starts to tilt away from vertica
This breaks the symmetry of the soliton, and causes i
begin to move. The director can tilt in two degenerate dir
tions, so a single static soliton can break into segments
propagate in opposite directions while still being held
gether where they meet, generating spiral patterns@3–5#.
These changes in structure and symmetry of the soliton w
it becomes dynamic have been described in the cited wo
and analyzed in the limit of small global director tilt@4,5#;
now we can account for the phase transition and velocity
the soliton in the general case of large director tilt.

If we simply use the classic Fre´edericksz transition in a
uniform sample for our model of the transition in the solito
then we can calculate the critical value ofa0, or equivalently
of vt, and the dependence ofu0(z) and um on the other
variables in the problem. In this case,u0(z) can be expresse
as an elliptic integral, and we have@16# an implicit relation
betweenum anda0:

Hsina05Hc

2

pE0

um du0

Asin2um2sin2u0

, ~18!

in which Hc5(p/d)AK/xa.
When um→0, this equation gives a critical value ofa0,

or, equivalently, ofvt for the dynamic to static soliton tran
sition:

sinac5
Hc

H
. ~19!

Sincevt5sin2a052sina0cosa0, we have

~vt!c52
Hc

H
A12S Hc

H D 2

. ~20!

We have compared this prediction for the soliton tran
tion with our numerical results in Table I. They tend to agr
for large values ofH/Hc . The smaller the value ofH/Hc ,
the less accurate the prediction.

To account for this difference, one of our first ideas w
that in the dynamic soliton the angleu0 at a given location
might not have time to change as the soliton moved past
point; this would favor the director simply staying parallel
the sample plane (u05p/2). To test this idea, we compare
the characteristic time for the director to respond to the m
netic fieldt to the time of passage of a soliton,th.2jh /v.
With the material constants we used in our simulations
the maximum velocity,th is about 5 times larger thant. This

TABLE I. Comparison of prediction by Eq.~20! and numerical
results for the critical value ofvt for the dynamic to static soliton
transition.

H/Hc 7.49 5.41 4.05

(vt)c theory 0.26 0.36 0.48
(vt)c numerical 0.30 0.43 0.58
nt
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means the soliton motion is a relatively slow process, w
ample time foru0 to reach quasistatic equilibrium.

It is clear that the internal structure of the soliton is qu
different from a translationally invariant sample, so o
simple estimate for the Fre´edericksz transition may be poo
However, just what elements of the internal structure, st
or dynamic, affect the critical condition for tilting of the
soliton plane is less clear. The data indicate that the tra
tion takes place at higher values ofvt than calculated from
Eq. ~20!. This can be expressed as a larger value forHc for
the transition in the soliton, or as a different projection an
for the magnetic field, larger than the value ofac calculated
above, by a small correction angled. By looking at our data,
we found that this angle can be expressed asd5(Hc /H)2.
Rewriting Eq.~5! with this added term, and usingac from
Eq. ~19!, we havevt5sin2(ac1d), or,

~vt!c5sin2FarcsinS Hc

H D1S Hc

H D 2G . ~21!

As seen in Table II, this accurately describes the transit
from static to dynamic solitons for a large range of fields a
sample thicknesses. For a typical value ofH/Hc55, d50.04
rad, a small correction. If we assume thatd is a constant
independent ofv, then above the critical value ofvt one
can calculate the maximum tilt angleum as a function ofvt
from the implicit relationship

sinF1

2
arcsin~vt!2S Hc

H D 2G5
2

p

Hc

H E
0

um du

Asin2um2sin2u
.

~22!

In Fig. 5 we have plotted the calculated values ofum
versusvt and made a comparison with our numerical da
It can be seen from the graph that the behavior ofum is very
close to what is expected for a Fre´edericksz transition. Fi-
nally, we can use these results forum to calculate the speed
of the dynamic soliton from Eq.~17!. We choose an exampl
of d572 mm andH58 kG. The comparison of theory with
the numerical data is shown in Fig. 6. As expected, the p

TABLE II. Comparison of theory and numerical data on th
critical value ofvt for the dynamic to static soliton transition.

d H H/Hc (vt)c

(mm! ~kG! Theory Numerical

32 8 3.33 0.71 0.69

41 8 4.26 0.55 0.55

41 9 4.80 0.49 0.49

52 6 4.05 0.58 0.58

52 7 4.73 0.49 0.49

52 8 5.41 0.43 0.43

60 8 6.24 0.36 0.36

72 8 7.49 0.30 0.30
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5558 56CHUN ZHENG AND ROBERT B. MEYER
diction by our theory is above the numerical data, since
used the angleum , which is the maximum value ofu0 in Eq.
~17!.

The qualitative functional form of soliton speed vers
vt shown in Fig. 6 compares well to the data measured
Nasunoet al. @6#. Their data show a continuous decrease
velocity of the dynamic soliton in the transition to a sta
soliton, quite different from the discontinuous transition w
hysteresis found by Migler and Meyer@1#. Although Nasuno
et al. compare their data to the predictions of a second or
transition for the small global director tilt limit presented b
Gilli et al. and Frischet al. @4,5#, in fact their experimenta
conditions (H/Hc53.8) are in the regime of large directo
tilt, the same as Migler and Meyer’s. We have found that
seeming discrepancy between experiments can be expla
by the role of the twist elastic constantK2 in changing the
nature of the soltion transition.

FIG. 5. The comparison of theory and numerical results for
relationship betweenum andvt. The theory curve is from Eq.~22!.
H/Hc56.24.

FIG. 6. The theoretical prediction of the speed of solitons
slightly above the numerical simulation results.
e

y
n

er

e
ed

III. EFFECTS OF VARYING K2 /K

The effect of varying elastic constantK2 on the move-
ment of a dynamic soliton is shown in Fig. 7. This is a rath
complicated situation. When the three elastic constants
not equal, the propagating object is no longer strictly a s
ton, since it oscillates in its shape and speed. WhenK2 is not
too small (K2 /K.0.721.0 for d552 mm, H58 kG!, the
average speed of a dynamic soliton behaves similarly to
of the one-K model. It goes continuously to zero, and th
zero point shifts toward largerv8 as K2 becomes smaller
When K2 is considerably smaller thanK (K2 /K<0.7), a
dynamic soliton’s speed drops to zero from a finite value;
transition from a dynamic soliton to a static one becom
first order. There is also a hysteresis loop associated with
point. This is the case observed in Migler’s experiments@1#.
When K2 becomes even smaller, the first order transiti
point shifts back toward lowerv8, with larger hysteresis.

Our interpretation of these phenomena involves sev
points. First, smallK2 favors the static soliton energetically
since it spends half its time as a twist structure, compare
the dynamic soliton, which is pure splay bend foru05p/2.
This moves the transition to higher values ofvt. Explaining
the change to a first order transition involves understand
the initial distortion of the soliton structure at smallu0; if the
initial replacement of twist curvature by bend curvatu
raises the soliton energy by more than the reduction of fi
energy due to the tilt, then small tilts are disfavored, wh
large tilts may still lower the total enregy. This results in
first order transition.

At high fields, more complex changes in the soliton stru
ture take place. As seen in Fig. 8 there is a remarkable
tortion of the previously simple soliton structure. WithK2
small, andum nearp/2, the elastic coupling in thez direction
is weak, and the soliton can easily be deformed. The high
region in the midplane tends to move faster than the low
parts near the surfaces, resulting in the stretched struc
seen in Fig. 8. In this stretched structure, the leading edg
more subject to the influence of the bulk, which forces t
soliton to stay in thex-y plane. Thus this stretching ma

e

s

FIG. 7. WhenK2 /K is below a certain limit (;0.7), the veloc-
ity of a soliton drops discontinuously and the transition from d
namic to static becomes first order.d552 mm, H58 kG.
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have a stabilizing effect, leading to increased hysteresi
the soliton transition.

In Fig. 7 we have also shown a case whereK2 is bigger
thanK. Although this is an artificial case, it has an intere
ing consequence. A biggerK2 means we have made th
static soliton less stable energetically, relative to the dyna
one. Remarkably, a small increase inK2 pushes the transi
tion point to vt50. The behavior of a soliton in this cas
resembles more the prediction of the sine-Gordon equat
Notice, however, that there is still tilting of the director in th
soliton, and the qualitative dependence of speed on tilt a
is still valid. Figure 9 is a plot ofum versusvt. Notice that
the tilt angle still goes continuously to zero, now atvt50,
and linearly, not with vertical slope. This results in the spe
varying quadratically with low values ofvt.

Finally, we return to the discrepency between the res
of Refs.@1# and@6# on the order of the soliton transition. Th
two groups used different materials, but with similar valu
of K2 /K. However, Nasunoet al.used a rather low magneti
field (H/Hc53.8) compared to Migler and Maye
(H/Hc56.8) We have found that the relative value ofK2 at
which the transition changes from second to first order
pends on magnetic field, with low fields favoring a seco
order transition for a larger range ofK2. In fact, we ran our
simulation for conditions as close as possible to those u
by Nasunoet al. using a value ofK2 /K50.5, a reasonable
estimate for their material, MBBA. We still found a firs
order transition. However, for a somewhat lower fie
(H/Hc53.33) the transition was again second order. T
precise location of the tricritical point separating first a
second order transitions may also depend on the differe
betweenK1 andK3, which is large in MBBA, and which we
do not account for in our calculations. We conclude that
different results obtained by the two groups are well with
the normal range expected, and do not represent a real
argeement. Unfortunately, neither group discovered
change from first order to second order transition with va
ing field strength that our calculations indicate should ex

IV. DISCUSSION

We have established a simple model to study the struc
and movement of a dynamic soliton. The dynamic soliton
quite different from a static one in structure. It is basically
two dimensional object with 2 degrees of freedom. Our
sults on the soltion transition and velocity are consistent w
experiments and with the previous conclusions of Refs.@4#
and @5#.

For the one elastic constant limit, our simplified analy

FIG. 8. When K2 is substantially smaller thanK ~here
K2 /K50.5), at high fields the structure of a soliton is dramatica
different from the one-K model. (d552 mm, H58 kG, v52.23
s21.!
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model based on the numerical simulations shows that t
good degree of approximation, the 2 degrees of freedom
be decoupled, with each being mainly a function of one
mension. Thez coupling of the director field can be de
scribed by a planar structure, and the tilting of the solit
plane is essential in determining soliton velocity. Moreov
the tilt behavior of the soliton plane can be understood
terms of a quasistatic second Fre´edericksz transition inside
the soliton, rather than mainly as a dynamic effect. Even
the case ofK2ÞK, the dependence of speed on tilt ang
seems qualitatively valid.

There are many unanswered questions. The someti
complex structure of the dynamic soliton in the case
K2<K, and the first order transition from dynamic to sta
are far from being explained in any detail. For the oneK
approximation, the dependance of the critical point for t
dynamic to static soliton transition on magnetic field stren
and sample thickness is qualitatively well understood
terms of a second Fre´edericksz transition, but the quantita
tive calculation of the critical point is not complete. Ou
empirical expression for a correction angled5(Hc /H)2 is
not clearly tied to a precise or unique physical argume
One idea is that although the second Fre´edericksz transition
is quasistatic, there is still a small dynamic correction co
nected with the asymmetry in the soliton that appears as s
as it starts to move. This could lead to the maximum torq
on theb plane occurring for a projection angle not normal
its initial vertical orientation, but off normal by a correctio
angle d, proportional to the ratio of field response time
t/tc5(Hc /H)2. This was the idea that led us to the form f
the correction angle we proposed above. However, we h
not been able to make the argument more quantitative.
other interpretation is that the internal structure of the soli
results in a critical field component for tilting,Hcs , which
happens to be larger thanHc . If it also happens that we ca
write this new critical field asHcs /H5Hc /H1(Hc /H)2, by
referring to Eqs.~18!–~22!, in the limit of smallHc /H, we
can get essentially the same correction angled, now repre-
senting the larger projection ofH normal to the initially ver-
tical b plane, rather than projection ofH onto a different
direction. However, in this case, we cannot explain t
particular form forHcs , or even why it should be large
thanHc .

FIG. 9. The tilting angleu0 for K2 larger thanK. It is well
coordinated with the speed of a soliton.



e-
n
et
n

rant
of

5560 56CHUN ZHENG AND ROBERT B. MEYER
On the experimental side, in light of our simulation r
sults, it would be interesting to look for the tricritical point i
the dynamic to static soliton transition, by a more compl
study of soliton speed as a function of magnetic field a
rotation rate.
tt
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